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SOME PROPERTIES OF THE MOTION OF AN ARTIFICIAL MOON SATELLITE NEAR 
THE LIBRATION POINT* 

M.KH. KHASANOVA 

Qualitative analysis has been used /l-4/to study certain properties of 
the motion of moon satellites near the libration point L,. The moon is 
regarded as a body with unequal principal central moments of inertia, 
rotating slowly with constant angular velocity n about the minor principal 
central axis of inertia. 

Consider the plane problem of the moiton of a moon satellite in its equatorial plane. 
The axes of a rectangular system of Cartesian coordinates coincide with the principal axes of 
the central ellipsoid of inertia. The expansion of the gravity force function will be given 

by the following formula /5/: 

(I++; [(B+C-2A)+:+(A+C-2R)y']+..., '=(f'+y+ (f) 

where t is the gravitational constant, 14 is the mass of the moon, A, B, C are its principal 

central moments of inertia, and I is the distance from the centre of the moon. 
The equations of motion of an equatorial satellite have the form 

t" - 2ny' - n'z = (Ix', I/" + 2N' - n*y = L’,’ . (2 

Let us introduce into expression (1) and equations (2) the small dimensionless parameter 
c(, writing 

B-C-2Acclh ALC-228 
MR' ' AlRL 

= CI'P 

where R and p are constants and R is the mean equatorial radius of the moon. 
Then the force function (1) will be represented by a series in powers of the small para- 

meter CL. When a=O, the ellipsoid becomes a sphere and the motion of the satellite in the 
inertial coordinate system occurs along an unperturbed Keplerian orbit. 

System (2) admists of the Jacobi integral (h is the Jacobi constant) 

The coordinates of thelibration point are found from the conditions aI',& = 61;0y = 0, which for 
small z yield 

z"=I~bOl~l-,..), y,=o (4) 

Yo = = z0 = 0; 

Putting in (3)x'= y'=O we find the critical values &of the Jacobi constant for small a 

A qualitative study of the properties of motion of the moon's satellites in its equatorial 
plane was carried out using the following values of the astrodynamic constants /5/: 
1798.10* kg.km2, 1M = 4.9024ii9.10-6 km3/sec2, 

A = 0.8878 

0.88836978.10D kg.km2 and R = 1738.09 km. 
B = 0.88890195~10~ kg.km2, n = 2.661699Y89.10-L set, C= 

The above values yield h.= ,0.1162.10-3 km2/sec2. 
When the height of the satellite above the moon's surface is varied from H= 50 km to 100 

km in 10 km steps, the corresponding values of the Jacobi integral constant are h.iOs= -0.5137,- 
0.4104, -0.3124, -0.2100, -0.1162, +0.1900 km2/sec2. The libration points &., - w.9635; 0), L,%, (0; kO.8988) 
(at H= 90 km) are distributed symmetrically about the origin of coordinates. 

Now, using the libration point L, as the origin of the new coordinate systems with the 
axes parallel to the axes of the old system, and makins the chancre of variables z=z.+E and 
y-n, we obtain the equations of motion of the satellite to terms of the to first-order of 
*Prikl.ffatem.l4ekhan.,49,2,326-330,1985 
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smallness in f and n, in the form 

(5) 

The Jacobi integral is now transformed to 

v2 = E.2 + '1'2 = nx (lo* + E2 + 'I* + 2r&) + 2 (v+ h) (6) 

Assuming that & and q are sufficiently small and the value of the Jacobi constant h is 
nearly critical, we shall study the properties of the motion of the satellite in the equatorial 
plane, and determine the types of singularities in the neighbourhood of the libration point 

L,. 
The approximate Hill curve /6/ in this case, up to second-order terms in E and n,takes 

the form of an ellipse with eccentricity ~0.50 

X, = 2 (h - nMis/M’,’ + n2fMaR2p) 
In the case when 

the characteristic equation of systerr (5) wili become 

When i>P. Eq. (7) has twc real roots and two purely imaginary conjugate roots. 
parameters I i. fir and 1; 1"~ 

The 
are constant quantities and depend on the moments of inertia and 

the mass of the body. The roots have the following form up to terms of the second-order of 
smallness with resepct to g and n: 

y,,2 = = f?in,', y*,a = 21. 

When i,<p. Eq.(7) has twc different, pair-wise conjugate, purely imaginary roots 

yl,* = * '1/-I ia,', 7'1.d = - 1 . 
Therefore the libration pcint L, is a centre-type sing.alarity only to a first approxima- 

tion. 
Using the systen of concentric circles 

t*+ ?)* = I+ (8) 

as the one-parameter family of curves /7/, we shall study the behaviour of the satellite 
trajectories around the libration point L, for various values of h differing little from its 

critical value 
For every fixed value of h there exists in the k,n-plane a curve l."(h) of zero velocities 

whose equa'ion c in pclar coordinates has the fc Ilowing form after changing the old coordinates: 

v" (h; = n*pb+ 243 T 21M$ 7 fMR? [(2C - R - .4) - (9) 
3(6 - A)COS 2q] = (1. 

(p* = E* T n*, arc&r+ = niej. 

If the roots of !9) are real, then the Hill curve will divide the p, q-plane into two 

regions: in one of them c2<0 and no motion is possible, in the other VP>0 and motion is 

possible and all trajectories corresponding to the given value of the Jacobi constant h (Fig. 
1, curves 1-4) lie within it. 

We note that Figs.l--? are constructed for the case when h= 0.4104~10-z. 
In determining the roots of (9) for the specific values of h, we note that: 
lo. When h>h., the Hill curve is of no interest since the satellite may move away 

from the libration point L, without limit. 
20. When h<h., the Hill curve will be represented by a closed, oval-like curve surround- 

ing the point L,; motion is impossible inside it since v2<0 (Fig-l, the dashed lines, Fig.2). 

Outside the oval La> 0. and therefore a motion is possible (Fig.1, curves I--P,Figs.Z, 3). 
30. men h = -0.513E.10-3, -0.4104~10-3. -0.3121~10-3 km2/sec2, the Hill curves surrounding L, 

have the form of ovals stretched along the ordinate. When h with negative sign increase in 

modulus, the cuxes become less stretched and more circular. 
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Fig.1 

Fig.2 Fig.3 

4O. For small values of h(Ih i<0.2100~10-Jkm2/sec2) the Hill curve takes a form resembling 

a lemniscate, and this implies the presence of centre-type singularities (Fig.1, curves 1, 2). 
5'. When h=h., the inner curces contracts to the libration point L,. We will study 

the bundle of trajectories emerging from a single point (elliptic when D"(h)<O. hyperbolic 
when D" (h) > il and parabolic when D"(h)= 0), by considering the Darwin curve whose equation in 
explicit form is /4, 6/ 

D' (h) = 64 .'p'O i_ !24 n*h@ + 124 n*fMp' + (10) 
64 nz/MRz[2C - B -A + (E - .4)cos 2~1 p' 7 8fzM2p‘ + 
24f*M*R* 12c - .4 - B + 3 (B - A) ~05 291 p* T f?M*R'I(B + 
C-.24)* + (A i_ C - 281'1 (39 - 33 cos 2~ 7 21 cos 4q) = 0. 

Computing the roots of Eq.(lO) for the values of h used, we conclude that lo. For all 
values of h not exceeding the critical value h,, the Darwin curves surrounding the point L, 

are nearly circular (Fig.1, curves 5, 6, 25, and Fig.2). 
20. The Darwin curve has not discontinuities; from lo it follows that when h+h. neither 

can it have branches moving to infinity; hence it must consist of closed loops. 
3O. When h==h., the Darwin curve, as well as the Hill curve degenerate into the libra- 

tion point L,. 

4O. For large values of 1 A / a Darwin curve surrounds the libration point L,. It is nearly 
circular and lies completely within the domain of possible motions (Fig.1, curves 5, 15). 
Within the curve (Fig.1, curves 5, 153 the characteristic u(~)<u and the bundle is elliptic, 
while outside it D'(h)>0 and the bundle is hyperbolic. 

5O. When the values of /II) increase, the circle-like Darwin regions where the trajectories 
are elliptic decrease, as well as the outer Hill curves. 

Comparing the sets of the Hill and Darwin curves we come to the following conclusion. 
For low values of h, for which the Hill and Darwin curves were studied, different from h. 
corresponding to the libration point L,, the Hill curve does not intersect the Darwin curve 
and is situated on the side of the Darwin curve on which the Darwin characteristic is positive 
and the bundle hyperbolic. 

To carry out a more complete study of the qualitative pattern of motions of a satellite 
in a gravitational field of a triaxial ellipsoid, we shall consider the geometric locus of 
the contact between the trajectories and the topographic family of circles (8). 

The equation of the geometric locus of contact (the contact characteristic) has the form 

g"' (h) = 2nQl" - 4n'hp~-~A4n'JV [2(C - A) T B; (38- 2A)eor2q] >; (11) 
ps _t 2 {?','p* - 4n*hp'~ 2fMR?p3 - 3nVGRlp? T 
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Using curve (11) and the results in /4/ we shall study the following curves a) g"z(h)= 0, 
i.e. a geometric locus of contact with the same circles (8) for the forward-motion trajectories; 

b) q”l(L)=O i.e., the geometric locus of contact with the same circles for the reverse-motion 
trajectories. 

The curve a) divides the whole p,~ plane into a region of purely external contacts between 

the forward-motion trajectories and the circles (8)p.'z(h) and the region of purely internal 
contacts of the forward trajectories g"*(icj. Curve b) divides the plane into a region of 
purely external contacts between the reverse motion trajectories and the circles (8) g"r(h), and 
the region of purely internal contacts between the reverse motion trajectories and the circles 

(8) g”=(k). The curves 9: represents the region of mixed contacts in which both internal and 
external contacts are possible. Curves 7-9 in Fig.1 depict the boundaries of the region of 
purely external contacts of the forward-motion trajectories; the curves lo-12 (dashed lines) 
represent the boundaries of the region of purely internal contacts of the forward-motion 
trajectories. A boundary of the region of purely external contacts of the reverse motion 
trajectories (not shown in Fig.1) passes between curves 3 and 7, 3 and 6. Curve 13 and the 
curves lying between curves 2 and 13, 13 and 8, represent the boundary of the region of purely 
internal contacts of the reverse-motion trajectories. 

When h = ir, , the critical value of the contact characteristic degenerates into the libra- 
tion point L,. When the values of /hI increase further the regions of external and internal 
contact of the trajectories of (forward and reverse) motion do not come in contact with each 
other. 

The internal part of the geometric locus of contacts represents a Hadamard curve (the 
contact within the Hadamard curve will be external for any possible trajectories) whose equa- 
tion has the fen; 

I/' ,ij, "r+ - 1.11,~' - ?j.IjR’ /f.l - B T 2cj - 3 (A -B) co: 'q) = 0. 

In the case in question the curve i/-(91 resembles a lemniscate Figs.2, 3). 
We will now carry out a short analysis of certain general properties of the contact 

characteristic with the level lines 

1. ,I. !,J =~ - 1, = COJl?I (121 

Using system (2; and the Jacobi integral (3!, we shall write the equation of the geometric 
locus of contacts of the trajectories with the level lines (i2) in the form 

We write the equaticn of time Sadamaro c'urve as follows: 

II t 1’ -= (,?‘L - .\ , E (I 

Let us inspect curve (13) for the vaiue cf i. = --(~.lll!+lP km2/sec2 and of the curves a: 

4 "' (hl and. b) g"i(l~) (Fig.1, curves i-12 and Fig.3). We shall utilize the curves E"(I) and 
.v; (I'J (in the present case t?re curve E'(r) degenerates into the libration pcint L,). 

The Hadamard curves H’(L’ ant’. the curves cf the geometric locus of contact between the 
trajectories (133, i.e. U":(il) and the level lines !1) pass outside the curve N'(U). The 

geometric locus of contact l"'+(I;‘ lies inside the Hadamard curve H'(V). On the other hand, 
the curve n'"(V) 2asses throUg?J the libration point L, and has a comrm~cr. tangent with the 
Hadamard curve and the curve L-"+ (is!, 

For large values of h the curve [."C consists of ring-like regions enveloping the inner 
and outer Hill regions. When h= k,, the geometric locus of the tangents t.'+ (i,i degenerates 
into the libration point 1,. ikenk = -0.4104.1~1-~km~/sec~, lemniscate-like L.":(k) branches oF - 

the geometric locus of contacts between the trajectories emerge from the libration point L, 
in both directions. A mixed type region U”*(k) is situated between C." (k) and C"- (ii; (Fig.3! . 

The region, 1"" (Ill within which the libration point L, lies, represents the region of 
externalcontactsbetweenthe trajectcries and level lines, i.e. a purely pericentric region. 

The region U"- (i,,. which is circular and embraces the mixed-type region u"* ()I) and 

libration point L1, represent a region of purely internal contacts between the trajectories 
and level lines, i.e. a purely apocentric region. 

The region of mixed types L"+((li) is a pericentric region L""(/IJ and an apocentric region 
u"- (iI,. 

From Figs.l-3 it is clear that the higher thelevel of flight above the moon's surface 
(with an absolute value of h exceeding the critical value), the greater the Hill region and 
the Darwin curves become smaller. 
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ON THE ISOLATED CHARACTER OF SOLUTIONS WITH A STRONG ATTACHED SHOCK WAVE AT 
THE EDGES OF A v-SHAPED WING AND WEDGE* 

A.V. GRISHIN 

The transonic approximation is used to study the conical problems of 
supersonic flow past an infinite wedge and a V-shaped wing, the flow 
behind the attached shock wave is subsonic. The possibility of the 
existence of a flow with a strong shock in a plane perpendicular to the 
edge of the wing or wedge is clarified. For this reason the linear theory 
is used to study the boundary value problems for the perturbations in 
exact solutions with a plane shock. It is shown that the boundary value 
problems have a solution, provided that the plane shock wave corresponding 
to the exact solution is weak (in a plane perpendicular to the edge!, and 
have no solution when the shock is strong. 

Earlier /l/, the problem of flow past a V-shaped wing was studied, where the flow was 
supersonic behind the attached shock wave. Experimental investigations /2-4iof the flow past 
a V-shaped wing resembling flows with a strong plane shock, made it possible to establish /4/ 
the isolated nature of the flow with a strong shock. Numerical methods /5/ and experimental 
methods /2-4/were used to show that when the angle of attach of the V-shaped wing with a 
strong plane shock is reduced, a flow results with Mach interaction between the shock waves 
and the weak discontinuity at the edge. It was established /4/ that increasing the angle of 
attack causes detachment of the shock wave. A non-steady model of supersonic flow past an 
infinite wedge is proposed in /6/** (**see also Rusanov V.V. and Sharakshane A.A. Non-steady 
models of flow past conical bodies. Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 
No.27, 1978, and Rusanov V.V. and Sharakshane A.A., Study of a linearized non-stationary 
model of flow past an infinite wedge. Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 
No.103, 1980) and it is shown that a flow with a strong shock wave is unstable in this model. 
The non-existence of a flow with a strong shock represents a basically different case of a 
finite wedge and was proved using the hodograph method /7/ without taking into account the 
vorticity (in the transonic approximation). The result is generalized in /8/ to the case of 
vertical flows. 

1. Assuming that the velocities are normalized with respect to the speed of sound, we 
shall consider the problems in the transonic approximation. We take, as the unperturbed flow, 
the uniform flow past a wedge with a strong or weak shock wave attached to the edge of the 
wedge, in the case when the flow behind the shock is subsonic. We choose a coordinate system 
attached to the edge of the wedge, in which the z axis is directed along the edge and the I 
axis along the velocity vector behind the shock wave (Fig.1). The transonic velocity components 
Y = (1 -!- U, ", I) can then be represented in the form u = uO,.v= vrn,m= 0 in front of the wave, 
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